Package: bumblebee (via r-universe)

September 4, 2024

Title Quantify Disease Transmission Within and Between Population Groups

Version 0.1.0

Description A simple tool to quantify the amount of transmission of an infectious disease of interest occurring within and between population groups. 'bumblebee' uses counts of observed directed transmission pairs, identified phylogenetically from deep-sequence data or from epidemiological contacts, to quantify transmission flows within and between population groups accounting for sampling heterogeneity. Population groups might include: geographical areas (e.g. communities, regions), demographic groups (e.g. age, gender) or arms of a randomized clinical trial. See the 'bumblebee' website for statistical theory, documentation and examples https://magosil86.github.io/bumblebee/.

License MIT + file LICENSE

URL https://magosil86.github.io/bumblebee/

BugReports https://github.com/magosil86/bumblebee/issues

LazyData true

Depends R (>= 2.10)

Imports dplyr (>= 1.0.2), gtools (>= 3.8.2), Hmisc (>= 4.4-2), magrittr (>= 2.0.1), rmarkdown (>= 2.6)

Suggests covr (>= 3.5.1), knitr (>= 1.30), markdown (>= 1.1), testthat (>= 3.0.1)

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.1.1

Config/testthat/edition 3

VignetteBuilder knitr

Repository https://magosil86.r-universe.dev

26

RemoteUrl https://github.com/magosil86/bumblebee

RemoteRef HEAD

RemoteSha e44b55de833780defd37c81d2bb94f65ed1dff12

Contents

counts_hiv_transmission_pairs
estimated_hiv_transmission_flows
estimate_c_hat
estimate_multinom_ci
estimate_prob_group_pairing_and_linked
estimate_p_hat
estimate_theta_hat
estimate_transmission_flows_and_ci
prep_p_hat
sampling_frequency

Observed HIV transmission pairs

Description

Index

Counts of directed HIV transmission pairs observed within and between intervention and control communities in the 30-community BCPP/Ya Tsie HIV prevention trial in Botswana (2013-2018). The Botswana -Ya Tsie trial was a pair-matched community randomized trial that evaluated the effect of a universal HIV test and treat intervention in reducing population-level incidence. For further details see references and: https://magosil86.github.io/bumblebee/.

Usage

counts_hiv_transmission_pairs

counts_hiv_transmission_pairs

Format

A data frame:

H1_group Name of population group 1

H2_group Name of population group 1

num_linked_pairs_observed Number of observed directed transmission pairs between samples
from population groups 1 and 2

Source

https://magosil86.github.io/bumblebee/

References

Magosi LE, et al., Deep-sequence phylogenetics to quantify patterns of HIV transmission in the context of a universal testing and treatment trial – BCPP/ Ya Tsie trial. To submit for publication, 2021.

estimated_hiv_transmission_flows

Estimated HIV transmission flows

Description

Estimated HIV transmissions within and betweeen intervention and control communities in the BCPP/Ya Tsie trial population adjusted for variability in sampling.

Usage

estimated_hiv_transmission_flows

Format

A data frame:

H1_group Name of population group 1

H2_group Name of population group 2

number_hosts_sampled_group_1
Number of individuals sampled from population group 1

number_hosts_sampled_group_2 Number of individuals sampled from population group 2

number_hosts_population_group_1 Estimated number of individuals in population group 1

number_hosts_population_group_2 Estimated number of individuals in population group 2

max_possible_pairs_in_sample Number of distinct possible transmission pairs between individuals sampled from population groups 1 and 2

max_possible_pairs_in_population Number of distinct possible transmission pairs between individuals in population groups 1 and 2

num_linked_pairs_observed Number of observed directed transmission pairs between samples from population groups 1 and 2

p_hat Probability that pathogen sequences from two individuals randomly sampled from their respective population groups are linked

est_linkedpairs_in_population Estimated transmission pairs between population groups 1 and 2

theta_hat Estimated transmission flows or relative probability of transmission within and between population groups 1 and 2 adjusted for sampling heterogeneity. More precisely, the conditional probability that a pair of pathogen sequences is from a specific population group pairing given that the pair is linked.

obs_trm_pairs_est_goodman Point estimate, Goodman method Confidence intervals for observed transmission pairs

obs_trm_pairs_lwr_ci_goodman Lower bound of Goodman confidence interval

obs_trm_pairs_upr_ci_goodman Upper bound of Goodman confidence interval

est_goodman Point estimate, Goodman method Confidence intervals for estimated transmission flows

lwr_ci_goodman Lower bound of Goodman confidence interval

upr_ci_goodman Upper bound of Goodman confidence interval

prob_group_pairing_and_linked Probability that a pair of pathogen sequences is from a specific population group pairing and is linked

c_hat Probability that a randomly selected pathogen sequence in one population group links to at least one pathogen sequence in another population group i.e. probability of clustering

est_goodman_cc Point estimate, Goodman method Confidence intervals with continuity correction

lwr ci goodman cc Lower bound of Goodman confidence interval

upr_ci_goodman_cc Upper bound of Goodman confidence interval

est_sisonglaz Point estimate, Sison-Glaz method Confidence intervals

lwr_ci_sisonglaz Lower bound of Sison-Glaz confidence interval

upr_ci_sisonglaz Upper bound of Sison-Glaz confidence interval

est_qhurst_acswr Point estimate, Queensbury-Hurst method Confidence intervals via ACSWR r package

lwr_ci_qhurst_acswr Lower bound of Queensbury-Hurst confidence interval

upr_ci_qhurst_acswr Upper bound of Queensbury-Hurst confidence interval

est_qhurst_coinmind Point estimate, Queensbury-Hurst method Confidence intervals via Coin-MinD r package

lwr_ci_qhurst_coinmind Lower bound of Queensbury-Hurst confidence interval

upr_ci_qhurst_coinmind Upper bound of Queensbury-Hurst confidence interval

lwr_ci_qhurst_adj_coinmind Lower bound of Queensbury-Hurst confidence interval adjusted

upr_ci_qhurst_adj_coinmind Upper bound of Queensbury-Hurst confidence interval adjusted

Source

https://magosil86.github.io/bumblebee/

References

Magosi LE, et al., Deep-sequence phylogenetics to quantify patterns of HIV transmission in the context of a universal testing and treatment trial – BCPP/ Ya Tsie trial. To submit for publication, 2021.

estimate_c_hat 5

estimate_c_hat

estimate_c_hat Estimates probability of clustering

Description

This function estimates c_hat, the probability that a randomly selected pathogen sequence in one population group links to at least one pathogen sequence in another population group.

Usage

```
estimate_c_hat(df_counts_and_p_hat, ...)
## Default S3 method:
estimate_c_hat(df_counts_and_p_hat, ...)
```

Arguments

Value

Returns a data.frame containing:

- H1_group, Name of population group 1
- H2_group, Name of population group 2
- number_hosts_sampled_group_1, Number of individuals sampled from population group 1
- number_hosts_sampled_group_2, Number of individuals sampled from population group 2
- number_hosts_population_group_1, Estimated number of individuals in population group 1
- number_hosts_population_group_2, Estimated number of individuals in population group 2
- max_possible_pairs_in_sample, Number of distinct possible transmission pairs between individuals sampled from population groups 1 and 2
- max_possible_pairs_in_population, Number of distinct possible transmission pairs between individuals in population groups 1 and 2
- num_linked_pairs_observed, Number of observed directed transmission pairs between samples from population groups 1 and 2
- p_hat, Probability that pathogen sequences from two individuals randomly sampled from their respective population groups are linked
- c_hat, Probability that a randomly selected pathogen sequence in one population group links to at least one pathogen sequence in another population group i.e. probability of clustering

Methods (by class)

• default: Estimates probability of clustering

References

1. Magosi LE, et al., Deep-sequence phylogenetics to quantify patterns of HIV transmission in the context of a universal testing and treatment trial – BCPP/ Ya Tsie trial. To submit for publication, 2021.

2. Carnegie, N.B., et al., Linkage of viral sequences among HIV-infected village residents in Botswana: estimation of linkage rates in the presence of missing data. PLoS Computational Biology, 2014. 10(1): p. e1003430.

See Also

See estimate_p_hat to prepare input data to estimate c_hat

Examples

```
library(bumblebee)
library(dplyr)
# Estimate the probability of clustering between individuals from two population groups of interest
# We shall use the data of HIV transmissions within and between intervention and control
# communities in the BCPP/Ya Tsie HIV prevention trial. To learn more about the data
# ?counts_hiv_transmission_pairs, ?sampling_frequency and ?estimated_hiv_transmission_flows
# Load and view data
# The input data comprises counts of observed directed HIV transmission pairs within and
# between intervention and control communities in the BCPP/Ya Tsie trial, sampling
# information and the probability of linkage between individuals sampled from
# intervention and control communities (i.e. \code{p_hat})
# See ?estimate_p_hat() for details on estimating p_hat
results_estimate_p_hat <- estimated_hiv_transmission_flows[, c(1:10)]</pre>
results_estimate_p_hat
# Estimate c_hat
results_estimate_c_hat <- estimate_c_hat(df_counts_and_p_hat = results_estimate_p_hat)
# View results
results_estimate_c_hat
```

 $\begin{array}{ll} {\tt estimate_multinom_ci} & {\tt estimate_multinom_ci} & {\tt Estimates} & {\tt confidence} & {\tt intervals} & {\tt for} & {\tt transmission} \\ sion & {\tt flows} \\ \end{array}$

Description

This function computes simultaneous confidence intervals at the 5% significance level for estimated transmission flows. Available methods for computing confidence intervals are: Goodman, Goodman with a continuity correction, Sison-Glaz and Queensbury-Hurst.

Usage

```
estimate_multinom_ci(df_theta_hat, ...)

## Default S3 method:
    estimate_multinom_ci(df_theta_hat, detailed_report = FALSE, ...)

Arguments

df_theta_hat A data.frame returned by the function: estimate_theta_hat()
```

```
Further arguments.

detailed_report
```

A boolean value to produce detailed output of the analysis. (Default is FALSE)

Value

Returns a data.frame containing:

- H1_group, Name of population group 1
- H2_group, Name of population group 2
- number_hosts_sampled_group_1, Number of individuals sampled from population group 1
- number_hosts_sampled_group_2, Number of individuals sampled from population group 2
- number_hosts_population_group_1, Estimated number of individuals in population group 1
- number_hosts_population_group_2, Estimated number of individuals in population group 2
- max_possible_pairs_in_sample, Number of distinct possible transmission pairs between individuals sampled from population groups 1 and 2
- max_possible_pairs_in_population, Number of distinct possible transmission pairs between individuals in population groups 1 and 2
- num_linked_pairs_observed, Number of observed directed transmission pairs between samples from population groups 1 and 2
- p_hat, Probability that pathogen sequences from two individuals randomly sampled from their respective population groups are linked
- est_linkedpairs_in_population, Estimated transmission pairs between population groups 1 and
- theta_hat, Estimated transmission flows or relative probability of transmission within and between population groups 1 and 2 adjusted for sampling heterogeneity. More precisely, the conditional probability that a pair of pathogen sequences is from a specific population group pairing given that the pair is linked.
- obs_trm_pairs_est_goodman, Point estimate, Goodman method Confidence intervals for observed transmission pairs

- obs_trm_pairs_lwr_ci_goodman, Lower bound of Goodman confidence interval
- obs_trm_pairs_upr_ci_goodman, Upper bound of Goodman confidence interval
- est_goodman, Point estimate, Goodman method Confidence intervals for estimated transmission flows
- lwr ci goodman, Lower bound of Goodman confidence interval
- upr_ci_goodman, Upper bound of Goodman confidence interval

The following additional fields are returned if the detailed_report flag is set

- est_goodman_cc, Point estimate, Goodman method Confidence intervals with continuity correction
- lwr_ci_goodman_cc, Lower bound of Goodman confidence interval
- upr_ci_goodman_cc, Upper bound of Goodman confidence interval
- est sisonglaz, Point estimate, Sison-Glaz method Confidence intervals
- lwr_ci_sisonglaz, Lower bound of Sison-Glaz confidence interval
- upr_ci_sisonglaz, Upper bound of Sison-Glaz confidence interval
- est_qhurst_acswr, Point estimate, Queensbury-Hurst method Confidence intervals via AC-SWR r package
- lwr_ci_qhurst_acswr, Lower bound of Queensbury-Hurst confidence interval
- upr_ci_qhurst_acswr, Upper bound of Queensbury-Hurst confidence interval
- est_qhurst_coinmind, Point estimate, Queensbury-Hurst method Confidence intervals via Coin-MinD r package
- lwr_ci_qhurst_coinmind, Lower bound of Queensbury-Hurst confidence interval
- upr_ci_qhurst_coinmind, Upper bound of Queensbury-Hurst confidence interval
- lwr_ci_qhurst_adj_coinmind, Lower bound of Queensbury-Hurst confidence interval adjusted
- upr_ci_qhurst_adj_coinmind, Upper bound of Queensbury-Hurst confidence interval adjusted

Methods (by class)

• default: Estimates confidence intervals for transmission flows

References

- 1. Magosi LE, et al., Deep-sequence phylogenetics to quantify patterns of HIV transmission in the context of a universal testing and treatment trial BCPP/ Ya Tsie trial. To submit for publication, 2021.
- 2. Goodman, L. A. On Simultaneous Confidence Intervals for Multinomial Proportions Technometrics, 1965. 7, 247-254.
- 3. Cherry, S., A Comparison of Confidence Interval Methods for Habitat Use-Availability Studies. The Journal of Wildlife Management, 1996. 60(3): p. 653-658.
- 4. Sison, C.P and Glaz, J. Simultaneous confidence intervals and sample size determination for multinomial proportions. Journal of the American Statistical Association, 1995. 90:366-369.

5. Glaz, J., Sison, C.P. Simultaneous confidence intervals for multinomial proportions. Journal of Statistical Planning and Inference, 1999. 82:251-262.

- 6. May, W.L., Johnson, W.D. Constructing two-sided simultaneous confidence intervals for multinomial proportions for small counts in a large number of cells. Journal of Statistical Software, 2000. 5(6). Paper and code available at https://www.jstatsoft.org/v05/i06.
- 7. Carnegie, N.B., et al., Linkage of viral sequences among HIV-infected village residents in Botswana: estimation of linkage rates in the presence of missing data. PLoS Computational Biology, 2014. 10(1): p. e1003430.
- 8. Ratmann, O., et al., Inferring HIV-1 transmission networks and sources of epidemic spread in Africa with deep-sequence phylogenetic analysis. Nature Communications, 2019. 10(1): p. 1411.
- 9. Wymant, C., et al., PHYLOSCANNER: Inferring Transmission from Within- and Between-Host Pathogen Genetic Diversity. Molecular Biology and Evolution, 2017. 35(3): p. 719-733.

See Also

See estimate_theta_hat to prepare input data to estimate confidence intervals.

To learn more about the Goodman and Sison-Glaz confidence interval methods see \code{\link[DescTools]{MultinomCI}}. For Queensbury-Hurst confidence intervals see \code{\link[ACSWR]{QH_CI}} and \code{\link[CoinMinD]{QH}}

Examples

```
library(bumblebee)
library(dplyr)
# Compute confidence intervals for estimated transmission flows
# We shall use the data of HIV transmissions within and between intervention and control
# communities in the BCPP/Ya Tsie HIV prevention trial. To learn more about the data
# ?counts_hiv_transmission_pairs and ?sampling_frequency
# Load and view data
# The data comprises counts of observed directed HIV transmission pairs between individuals
# sampled from intervention and control communities (i.e. num_linked_pairs_observed);
# and the estimated HIV transmissions within and between intervention and control
# communities in the BCPP/Ya Tsie trial population adjusted for sampling heterogneity
# (i.e. \code{est_linkedpairs_in_population}). See ?estimate_theta_hat() for details on
# computing \code{est_linkedpairs_in_population} and \code{theta_hat}.
results_estimate_theta_hat <- estimated_hiv_transmission_flows[, c(1:13)]
results_estimate_theta_hat
# Compute Goodman confidence intervals (Default)
results_estimate_multinom_ci <- estimate_multinom_ci(
   df_theta_hat = results_estimate_theta_hat,
```

```
detailed_report = FALSE)

# View results
results_estimate_multinom_ci

# Compute Goodman, Sison-Glaz and Queensbury-Hurst confidence intervals
results_estimate_multinom_ci_detailed <- estimate_multinom_ci(
    df_theta_hat = results_estimate_theta_hat,
    detailed_report = TRUE)

# View results
results_estimate_multinom_ci_detailed</pre>
```

```
{\tt estimate\_prob\_group\_pairing\_and\_linked} \\ {\tt estimate\_prob\_group\_pairing\_and\_linked} \\ {\it Estimates\ joint\ probability\ of\ linkage} \\
```

Description

This function computes the joint probability that a pair of pathogen sequences is from a specific population group pairing and linked.

Usage

```
estimate_prob_group_pairing_and_linked(
   df_counts_and_p_hat,
   individuals_population_in,
   ...
)

## Default S3 method:
estimate_prob_group_pairing_and_linked(
   df_counts_and_p_hat,
   individuals_population_in,
   verbose_output = FALSE,
   ...
)
```

Arguments

```
df_counts_and_p_hat
A data.frame returned by function: estimate_p_hat()
individuals_population_in
A numeric vector of the estimated number of individuals per population group
...
Further arguments.
verbose_output A boolean value to display intermediate output. (Default is FALSE)
```

Details

For a population group pairing (u, v), the joint probability that a pair is from groups (u, v) and is linked is computed as

$$(N_u v/N_c hoose_2) * p_h at_u v,$$

where,

- N uv = N u * N v: maximum distinct possible (u, v) pairs in population
- p_hat_uv: probability of linkage between two individuals randomly sampled from groups \boldsymbol{u} and \boldsymbol{v}
- N choose 2 or (N * (N 1))/2: all distinct possible pairs in population.

See bumblebee website for more details https://magosil86.github.io/bumblebee/.

Value

Returns a data.frame containing:

- H1_group, Name of population group 1
- H2 group, Name of population group 2
- number_hosts_sampled_group_1, Number of individuals sampled from population group 1
- number_hosts_sampled_group_2, Number of individuals sampled from population group 2
- number_hosts_population_group_1, Estimated number of individuals in population group 1
- number_hosts_population_group_2, Estimated number of individuals in population group 2
- max_possible_pairs_in_sample, Number of distinct possible transmission pairs between individuals sampled from population groups 1 and 2
- max_possible_pairs_in_population, Number of distinct possible transmission pairs between individuals in population groups 1 and 2
- num_linked_pairs_observed, Number of observed directed transmission pairs between samples from population groups 1 and 2
- p_hat, Probability that pathogen sequences from two individuals randomly sampled from their respective population groups are linked
- prob_group_pairing_and_linked, Probability that a pair of pathogen sequences is from a specific population group pairing and is linked

Methods (by class)

• default: Estimates joint probability of linkage

References

- Magosi LE, et al., Deep-sequence phylogenetics to quantify patterns of HIV transmission in the context of a universal testing and treatment trial – BCPP/ Ya Tsie trial. To submit for publication, 2021.
- 2. Carnegie, N.B., et al., Linkage of viral sequences among HIV-infected village residents in Botswana: estimation of linkage rates in the presence of missing data. PLoS Computational Biology, 2014. 10(1): p. e1003430.

12 estimate_p_hat

See Also

See estimate_p_hat to prepare input data to estimate prob_group_pairing_and_linked

Examples

```
library(bumblebee)
 library(dplyr)
 # Estimate joint probability that a pair is from a specific group pairing and linked
 # We shall use the data of HIV transmissions within and between intervention and control
 # communities in the BCPP/Ya Tsie HIV prevention trial. To learn more about the data
 # ?counts_hiv_transmission_pairs and ?sampling_frequency
 # Load and view data
 # The input data comprises counts of observed directed HIV transmission pairs
 # within and between intervention and control communities in the BCPP/Ya Tsie
 # trial, sampling information and the probability of linkage between individuals
 # sampled from intervention and control communities (i.e. \code{p_hat})
 # See ?estimate_p_hat() for details on estimating p_hat
 results_estimate_p_hat <- estimated_hiv_transmission_flows[, c(1:10)]
 results_estimate_p_hat
 # Estimate prob_group_pairing_and_linked
 results_prob_group_pairing_and_linked <- estimate_prob_group_pairing_and_linked(
     df_counts_and_p_hat = results_estimate_p_hat,
     individuals_population_in = sampling_frequency$number_population)
 # View results
 results_prob_group_pairing_and_linked
                         estimate_p_hat Estimates probability of linkage between two indi-
estimate_p_hat
```

Description

This function computes the probability that pathogen sequences from two individuals randomly sampled from their respective population groups (e.g. communities) are linked.

Usage

```
estimate_p_hat(df_counts, ...)
## Default S3 method:
estimate_p_hat(df_counts, ...)
```

viduals

estimate_p_hat 13

Arguments

df_counts A data.frame returned by the function: prep_p_hat()
... Further arguments.

Details

For a population group pairing (u, v), p_hat is computed as the fraction of distinct possible pairs between samples from groups u and v that are linked. Note: The number of distinct possible (u, v) pairs in the sample is the product of sampled individuals in groups u and u. If u = v, then the distinct possible pairs is the number of individuals sampled in population group u choose 2. See bumblebee website for more details https://magosil86.github.io/bumblebee/.

Value

Returns a data.frame containing:

- H1_group, Name of population group 1
- H2_group, Name of population group 2
- number_hosts_sampled_group_1, Number of individuals sampled from population group 1
- number_hosts_sampled_group_2, Number of individuals sampled from population group 2
- number_hosts_population_group_1, Estimated number of individuals in population group 1
- number_hosts_population_group_2, Estimated number of individuals in population group 2
- max_possible_pairs_in_sample, Number of distinct possible transmission pairs between individuals sampled from population groups 1 and 2
- max_possible_pairs_in_population, Number of distinct possible transmission pairs between individuals in population groups 1 and 2
- num_linked_pairs_observed, Number of observed directed transmission pairs between samples from population groups 1 and 2
- p_hat, Probability that pathogen sequences from two individuals randomly sampled from their respective population groups are linked

Methods (by class)

• default: Estimates probability of linkage between two individuals

References

- 1. Magosi LE, et al., Deep-sequence phylogenetics to quantify patterns of HIV transmission in the context of a universal testing and treatment trial BCPP/ Ya Tsie trial. To submit for publication, 2021.
- 2. Carnegie, N.B., et al., Linkage of viral sequences among HIV-infected village residents in Botswana: estimation of linkage rates in the presence of missing data. PLoS Computational Biology, 2014. 10(1): p. e1003430.

See Also

See prep_p_hat to prepare input data to estimate p_hat

14 estimate_theta_hat

Examples

```
library(bumblebee)
library(dplyr)
# Estimate the probability of linkage between two individuals randomly sampled from
# two population groups of interest.
# We shall use the data of HIV transmissions within and between intervention and control
# communities in the BCPP/Ya Tsie HIV prevention trial. To learn more about the data
# ?counts_hiv_transmission_pairs and ?sampling_frequency
# Prepare input to estimate p_hat
# View counts of observed directed HIV transmissions within and between intervention
# and control communities
counts_hiv_transmission_pairs
# View the estimated number of individuals with HIV in intervention and control
# communities and the number of individuals sampled from each
sampling_frequency
results_prep_p_hat <- prep_p_hat(group_in = sampling_frequency$population_group,
                             individuals_sampled_in = sampling_frequency$number_sampled,
                       individuals_population_in = sampling_frequency$number_population,
                                 linkage_counts_in = counts_hiv_transmission_pairs,
                                 verbose_output = FALSE)
# View results
results_prep_p_hat
# Estimate p_hat
results_estimate_p_hat <- estimate_p_hat(df_counts = results_prep_p_hat)
# View results
results\_estimate\_p\_hat
```

estimate_theta_hat

estimate_theta_hat Estimates conditional probability of linkage
(transmission flows)

Description

This function estimates theta_hat, the relative probability of transmission within and between population groups accounting for variable sampling rates among population groups. This relative probability is also refferred to as transmission flows.

estimate_theta_hat 15

Usage

```
estimate_theta_hat(df_counts_and_p_hat, ...)
## Default S3 method:
estimate_theta_hat(df_counts_and_p_hat, ...)
```

Arguments

Details

For a population group pairing (u, v), the estimated transmission flows within and between population groups u and v, are represented by the vector theta_hat,

$$\hat{\theta} = (\hat{\theta}_{uu}, \hat{\theta}_{uv}, \hat{\theta}_{vu}, \hat{\theta}_{vv}),$$

and are computed as

$$\hat{\theta_{ij}} = Pr(pairfromgroups(i,j)|pairislinked), where i = u, vandj = u, v,$$

$$\hat{\theta_{ij}} = \frac{N_{ij}p_{ij}}{\sum_{m}\sum_{n>m}N_{mn}p_{mn}}, where i = u, vand j = u, v,$$

See bumblebee website for more details https://magosil86.github.io/bumblebee/.

Value

Returns a data.frame containing:

- H1_group, Name of population group 1
- H2_group, Name of population group 2
- number_hosts_sampled_group_1, Number of individuals sampled from population group 1
- number_hosts_sampled_group_2, Number of individuals sampled from population group 2
- number hosts population group 1, Estimated number of individuals in population group 1
- number_hosts_population_group_2, Estimated number of individuals in population group 2
- max_possible_pairs_in_sample, Number of distinct possible transmission pairs between individuals sampled from population groups 1 and 2
- max_possible_pairs_in_population, Number of distinct possible transmission pairs between individuals in population groups 1 and 2
- num_linked_pairs_observed, Number of observed directed transmission pairs between samples from population groups 1 and 2
- p_hat, Probability that pathogen sequences from two individuals randomly sampled from their respective population groups are linked

16 estimate_theta_hat

est_linkedpairs_in_population, Estimated transmission pairs between population groups 1 and

• theta_hat, Estimated transmission flows or relative probability of transmission within and between population groups 1 and 2 adjusted for sampling heterogeneity. More precisely, the conditional probability that a pair of pathogen sequences is from a specific population group pairing given that the pair is linked.

Methods (by class)

• default: Estimates conditional probability of linkage (transmission flows)

References

- 1. Magosi LE, et al., Deep-sequence phylogenetics to quantify patterns of HIV transmission in the context of a universal testing and treatment trial BCPP/ Ya Tsie trial. To submit for publication, 2021.
- 2. Carnegie, N.B., et al., Linkage of viral sequences among HIV-infected village residents in Botswana: estimation of linkage rates in the presence of missing data. PLoS Computational Biology, 2014. 10(1): p. e1003430.

See Also

See estimate_p_hat to prepare input data to estimate theta_hat

Examples

```
library(bumblebee)
library(dplyr)
# Estimate transmission flows within and between population groups accounting for variable
# sampling among population groups
# We shall use the data of HIV transmissions within and between intervention and control
# communities in the BCPP/Ya Tsie HIV prevention trial. To learn more about the data
# ?counts_hiv_transmission_pairs and ?sampling_frequency
# Load and view data
# The input data comprises counts of observed directed HIV transmission pairs within
# and between intervention and control communities in the BCPP/Ya Tsie trial,
# sampling information and the probability of linkage between individuals sampled
# from intervention and control communities (i.e. \code{p_hat})
# See ?estimate_p_hat() for details on estimating p_hat
results_estimate_p_hat <- estimated_hiv_transmission_flows[, c(1:10)]
results_estimate_p_hat
# Estimate theta_hat
results_estimate_theta_hat <- estimate_theta_hat(df_counts_and_p_hat = results_estimate_p_hat)
```

```
# View results
results_estimate_theta_hat
```

Description

This function estimates transmission flows or the relative probability of transmission within and between population groups accounting for variable sampling among population groups.

Corresponding confidence intervals are provided with the following methods: Goodman, Goodman with a continuity correction, Sison-Glaz and Queensbury-Hurst.

Usage

```
estimate_transmission_flows_and_ci(
  group_in,
  individuals_sampled_in,
  individuals_population_in,
  linkage_counts_in,
   ...
)

## Default S3 method:
estimate_transmission_flows_and_ci(
  group_in,
  individuals_sampled_in,
  individuals_population_in,
  linkage_counts_in,
  detailed_report = FALSE,
  verbose_output = FALSE,
  ...
)
```

Arguments

group_in

A character vector indicating population groups/strata (e.g. communities, agegroups, genders or trial arms) between which transmission flows will be evaluated,

individuals_sampled_in

A numeric vector indicating the number of individuals sampled per population group,

individuals_population_in

A numeric vector of the estimated number of individuals per population group, linkage_counts_in

A data frame of counts of linked pairs identified between samples of each population group pairing of interest.

The data.frame should contain the following three fields:

- H1_group (character) Name of population group 1
- H2_group (character) Name of population group 2
- number_linked_pairs_observed (numeric) Number of observed directed transmission pairs between samples from population groups 1 and 2

... Further arguments.

detailed_report

A boolean value to produce detailed output of the analysis

verbose_output A boolean value to display intermediate output (Default is FALSE)

Details

Counts of observed directed transmission pairs can be obtained from deep-sequence phylogenetic data (via phyloscanner) or from known epidemiological contacts. Note: Deep-sequence data is also commonly referred to as high-throughput or next-generation sequence data. See references to learn more about phyloscanner.

The estimate_transmission_flows_and_ci() function is a wrapper function that calls the following functions:

- 1. The prep_p_hat() function to determine all possible combinations of the population groups/strata provided by the user. Type ?prep_p_hat() at R prompt to learn more.
- 2. The estimate_p_hat() function to compute the probability of linkage between pathogen sequences from two individuals randomly sampled from their respective population groups. Type ?estimate_p_hat() at R prompt to learn more.
- 3. The estimate_theta_hat() function that uses p_hat estimates to compute the conditional probability of linkage that a pair of pathogen sequences is from a specific population group pairing given that the pair is linked. The conditional probability, theta_hat represents transmission flows or the relative probability of transmission within and between population groups adjusted for variable sampling among population groups. Type ?estimate_theta_hat() at R prompt to learn more.
- 4. The estimate_multinom_ci() function to estimate corresponding confidence intervals for the computed transmission flows.

Further to estimating transmission flows and corresponding confidence intervals the estimate_transmission_flows_and_c function provides estimates for:

- 1. prob_group_pairing_and_linked, the joint probability that a pair of pathogen sequences is from a specific population group pairing and linked. Type ?estimate_prob_group_pairing_and_linked() at R prompt to learn more.
- 2. c_hat, the probability of clustering that a pathogen sequence from a population group of interest is linked to one or more pathogen sequences in another population group of interest. Type ?estimate_c_hat() at R prompt to learn more.

Value

Returns a data.frame containing:

- H1_group, Name of population group 1
- H2_group, Name of population group 2
- number_hosts_sampled_group_1, Number of individuals sampled from population group 1
- number_hosts_sampled_group_2, Number of individuals sampled from population group 2
- number_hosts_population_group_1, Estimated number of individuals in population group 1
- number_hosts_population_group_2, Estimated number of individuals in population group 2
- max_possible_pairs_in_sample, Number of distinct possible transmission pairs between individuals sampled from population groups 1 and 2
- max_possible_pairs_in_population, Number of distinct possible transmission pairs between individuals in population groups 1 and 2
- num_linked_pairs_observed, Number of observed directed transmission pairs between samples from population groups 1 and 2
- p_hat, Probability that pathogen sequences from two individuals randomly sampled from their respective population groups are linked
- est_linkedpairs_in_population, Estimated transmission pairs between population groups 1 and
 2
- theta_hat, Estimated transmission flows or relative probability of transmission within and between population groups 1 and 2 adjusted for sampling heterogeneity. More precisely, the conditional probability that a pair of pathogen sequences is from a specific population group pairing given that the pair is linked.
- obs_trm_pairs_est_goodman, Point estimate, Goodman method Confidence intervals for observed transmission pairs
- obs_trm_pairs_lwr_ci_goodman, Lower bound of Goodman confidence interval
- obs_trm_pairs_upr_ci_goodman, Upper bound of Goodman confidence interval
- est_goodman, Point estimate, Goodman method Confidence intervals for estimated transmission flows
- lwr_ci_goodman, Lower bound of Goodman confidence interval
- upr ci goodman, Upper bound of Goodman confidence interval

The following additional fields are returned if the detailed_report flag is set

- prob_group_pairing_and_linked, Probability that a pair of pathogen sequences is from a specific population group pairing and is linked
- c_hat, Probability that a randomly selected pathogen sequence in one population group links to at least one pathogen sequence in another population group i.e. probability of clustering
- est_goodman_cc, Point estimate, Goodman method Confidence intervals with continuity correction
- lwr_ci_goodman_cc, Lower bound of Goodman confidence interval
- upr_ci_goodman_cc, Upper bound of Goodman confidence interval

- est_sisonglaz, Point estimate, Sison-Glaz method Confidence intervals
- lwr_ci_sisonglaz, Lower bound of Sison-Glaz confidence interval
- upr_ci_sisonglaz, Upper bound of Sison-Glaz confidence interval
- est_qhurst_acswr, Point estimate, Queensbury-Hurst method Confidence intervals via AC-SWR r package
- lwr_ci_qhurst_acswr, Lower bound of Queensbury-Hurst confidence interval
- upr_ci_qhurst_acswr, Upper bound of Queensbury-Hurst confidence interval
- est_qhurst_coinmind, Point estimate, Queensbury-Hurst method Confidence intervals via Coin-MinD r package
- lwr_ci_qhurst_coinmind, Lower bound of Queensbury-Hurst confidence interval
- upr_ci_qhurst_coinmind, Upper bound of Queensbury-Hurst confidence interval
- lwr_ci_qhurst_adj_coinmind, Lower bound of Queensbury-Hurst confidence interval adjusted
- · upr_ci_qhurst_adj_coinmind, Upper bound of Queensbury-Hurst confidence interval adjusted

Methods (by class)

• default: Estimates transmission flows and accompanying confidence intervals

References

- 1. Magosi LE, et al., Deep-sequence phylogenetics to quantify patterns of HIV transmission in the context of a universal testing and treatment trial BCPP/ Ya Tsie trial. To submit for publication, 2021.
- 2. Carnegie, N.B., et al., Linkage of viral sequences among HIV-infected village residents in Botswana: estimation of linkage rates in the presence of missing data. PLoS Computational Biology, 2014. 10(1): p. e1003430.
- 3. Cherry, S., A Comparison of Confidence Interval Methods for Habitat Use-Availability Studies. The Journal of Wildlife Management, 1996. 60(3): p. 653-658.
- 4. Ratmann, O., et al., Inferring HIV-1 transmission networks and sources of epidemic spread in Africa with deep-sequence phylogenetic analysis. Nature Communications, 2019. 10(1): p. 1411.
- 5. Wymant, C., et al., PHYLOSCANNER: Inferring Transmission from Within- and Between-Host Pathogen Genetic Diversity. Molecular Biology and Evolution, 2017. 35(3): p. 719-733.
- 6. Goodman, L. A. On Simultaneous Confidence Intervals for Multinomial Proportions Technometrics, 1965. 7, 247-254.
- 7. Sison, C.P and Glaz, J. Simultaneous confidence intervals and sample size determination for multinomial proportions. Journal of the American Statistical Association, 1995. 90:366-369.
- 8. Glaz, J., Sison, C.P. Simultaneous confidence intervals for multinomial proportions. Journal of Statistical Planning and Inference, 1999. 82:251-262.
- 9. May, W.L., Johnson, W.D. Constructing two-sided simultaneous confidence intervals for multinomial proportions for small counts in a large number of cells. Journal of Statistical Software, 2000. 5(6). Paper and code available at https://www.jstatsoft.org/v05/i06.

See Also

estimate_theta_hat and estimate_multinom_ci to learn more about estimation of transmission flows and confidence intervals.

Examples

```
library(bumblebee)
library(dplyr)
# Estimate transmission flows and confidence intervals
# We shall use the data of HIV transmissions within and between intervention and control
# communities in the BCPP/Ya Tsie HIV prevention trial. To learn more about the data
# ?counts_hiv_transmission_pairs and ?sampling_frequency
# View counts of observed directed HIV transmissions within and between intervention
# and control communities
counts_hiv_transmission_pairs
# View the estimated number of individuals with HIV in intervention and control
# communities and the number of individuals sampled from each
sampling_frequency
# Estimate transmission flows within and between intervention and control communities
# accounting for variable sampling among population groups.
# Basic output
results_estimate_transmission_flows_and_ci <- estimate_transmission_flows_and_ci(
   group_in = sampling_frequency$population_group,
    individuals_sampled_in = sampling_frequency$number_sampled,
    individuals_population_in = sampling_frequency$number_population,
    linkage_counts_in = counts_hiv_transmission_pairs)
# View results
results_estimate_transmission_flows_and_ci
# Retrieve dataset of estimated transmission flows
dframe <- results_estimate_transmission_flows_and_ci$flows_dataset
# Detailed output
results_estimate_transmission_flows_and_ci_detailed <- estimate_transmission_flows_and_ci(
    group_in = sampling_frequency$population_group,
    individuals_sampled_in = sampling_frequency$number_sampled,
    individuals_population_in = sampling_frequency$number_population,
    linkage_counts_in = counts_hiv_transmission_pairs,
    detailed_report = TRUE)
# View results
results_estimate_transmission_flows_and_ci_detailed
# Retrieve dataset of estimated transmission flows
dframe <- results_estimate_transmission_flows_and_ci_detailed$flows_dataset</pre>
```

22 prep_p_hat

```
# Options:
# To show intermediate output set verbose_output = TRUE
# Basic output
results_estimate_transmission_flows_and_ci <- estimate_transmission_flows_and_ci(
   group_in = sampling_frequency$population_group,
    individuals_sampled_in = sampling_frequency$number_sampled,
    individuals_population_in = sampling_frequency$number_population,
   linkage_counts_in = counts_hiv_transmission_pairs,
   verbose_output = TRUE)
# View results
results_estimate_transmission_flows_and_ci
# Detailed output
results_estimate_transmission_flows_and_ci_detailed <- estimate_transmission_flows_and_ci(
    group_in = sampling_frequency$population_group,
    individuals_sampled_in = sampling_frequency$number_sampled,
    individuals_population_in = sampling_frequency$number_population,
    linkage_counts_in = counts_hiv_transmission_pairs,
   detailed_report = TRUE,
   verbose_output = TRUE)
# View results
results_estimate_transmission_flows_and_ci_detailed
```

prep_p_hat

prep_p_hat Prepares input data to estimate p_hat

Description

This function generates variables required for estimating p_hat, the probability that pathogen sequences from two individuals randomly sampled from their respective population groups are linked. For a population group pairing (u,v), prep_p_hat determines all possible group pairings i.e. (uu,uv,vu,vv).

Usage

```
prep_p_hat(
   group_in,
   individuals_sampled_in,
   individuals_population_in,
   linkage_counts_in,
   ...
)

## Default S3 method:
```

prep_p_hat 23

```
prep_p_hat(
   group_in,
   individuals_sampled_in,
   individuals_population_in,
   linkage_counts_in,
   verbose_output = FALSE,
   ...
)
```

Arguments

group_in

A character vector indicating population groups/strata (e.g. communities, agegroups, genders or trial arms) between which transmission flows will be evaluated,

individuals_sampled_in

A numeric vector indicating the number of individuals sampled per population group,

individuals_population_in

A numeric vector of the estimated number of individuals per population group,

linkage_counts_in

A data frame of counts of linked pairs identified between samples of each population group pairing of interest.

The data.frame should contain the following three fields:

- H1_group (character) Name of population group 1
- H2_group (character) Name of population group 2
- number_linked_pairs_observed (numeric) Number of observed directed transmission pairs between samples from population groups 1 and 2

... Further arguments.

verbose_output A boolean value to display intermediate output. (Default is FALSE)

Details

Counts of observed directed transmission pairs can be obtained from deep-sequence phylogenetic data (via phyloscanner) or from known epidemiological contacts. Note: Deep-sequence data is also commonly referred to as high-throughput or next-generation sequence data. See references to learn more about phyloscanner.

Value

Returns a data.frame containing:

- H1_group, Name of population group 1
- H2_group, Name of population group 2
- number_hosts_sampled_group_1, Number of individuals sampled from population group 1
- number_hosts_sampled_group_2, Number of individuals sampled from population group 2
- number_hosts_population_group_1, Estimated number of individuals in population group 1

24 prep_p_hat

- number_hosts_population_group_2, Estimated number of individuals in population group 2
- max_possible_pairs_in_sample, Number of distinct possible transmission pairs between individuals sampled from population groups 1 and 2
- max_possible_pairs_in_population, Number of distinct possible transmission pairs between individuals in population groups 1 and 2
- num_linked_pairs_observed, Number of observed directed transmission pairs between samples from population groups 1 and 2

Methods (by class)

• default: Prepares input data to estimate p_hat

References

- 1. Magosi LE, et al., Deep-sequence phylogenetics to quantify patterns of HIV transmission in the context of a universal testing and treatment trial – BCPP/ Ya Tsie trial. To submit for publication, 2021.
- 2. Ratmann, O., et al., Inferring HIV-1 transmission networks and sources of epidemic spread in Africa with deep-sequence phylogenetic analysis. Nature Communications, 2019. 10(1): p. 1411.
- 3. Wymant, C., et al., PHYLOSCANNER: Inferring Transmission from Within and Between-Host Pathogen Genetic Diversity. Molecular Biology and Evolution, 2017. 35(3): p. 719-733.

See Also

```
estimate_p_hat
```

Examples

```
library(bumblebee)
library(dplyr)
# Prepare input to estimate p_hat
# We shall use the data of HIV transmissions within and between intervention and control
# communities in the BCPP/Ya Tsie HIV prevention trial. To learn more about the data
# ?counts_hiv_transmission_pairs and ?sampling_frequency
# View counts of observed directed HIV transmissions within and between intervention
# and control communities
counts_hiv_transmission_pairs
# View the estimated number of individuals with HIV in intervention and control
# communities and the number of individuals sampled from each
sampling_frequency
results_prep_p_hat <- prep_p_hat(group_in = sampling_frequency$population_group,</pre>
                             individuals_sampled_in = sampling_frequency$number_sampled,
                       individuals_population_in = sampling_frequency$number_population,
                                 linkage_counts_in = counts_hiv_transmission_pairs,
```

sampling_frequency 25

```
verbose_output = TRUE)
```

View results
results_prep_p_hat

sampling_frequency

Sampling fequency

Description

Estimated number of individuals with HIV in intervention and control communities of the BCPP/Ya Tsie trial, and the number of individuals sampled from each for HIV viral phylogenetic analysis.

Usage

```
sampling_frequency
```

Format

A data frame:

```
population_group Population groupnumber_sampled Number of individuals sampled per population groupnumber_population Estimated number of individuals in each population group
```

Source

```
https://magosil86.github.io/bumblebee/
```

References

Magosi LE, et al., Deep-sequence phylogenetics to quantify patterns of HIV transmission in the context of a universal testing and treatment trial – BCPP/ Ya Tsie trial. To submit for publication, 2021.

Index

```
* datasets
                                                prob_group_pairing_and_linked
    counts_hiv_transmission_pairs, 2
                                                        (estimate_prob_group_pairing_and_linked),
    estimated_hiv_transmission_flows,
                                                        10
                                                sampling_frequency, 25
    sampling_frequency, 25
                                                theta_hat (estimate_theta_hat), 14
c_hat (estimate_c_hat), 5
counts_hiv_transmission_pairs, 2
est_c_hat (estimate_c_hat), 5
est_multinom_ci (estimate_multinom_ci),
        6
est_p_hat (estimate_p_hat), 12
est_theta_hat (estimate_theta_hat), 14
estim_c_hat (estimate_c_hat), 5
estim_multinom_ci
        (estimate_multinom_ci), 6
estim_p_hat (estimate_p_hat), 12
estim_theta_hat (estimate_theta_hat), 14
estimate_c_hat, 5
estimate_multinom_ci, 6, 21
estimate_p_hat, 6, 12, 12, 16, 24
estimate_p_hat(), 5, 10, 15
estimate_prob_group_pairing_and_linked,
estimate_theta_hat, 9, 14, 21
estimate_theta_hat(), 7
estimate_transmission_flows_and_ci, 17
estimated_hiv_transmission_flows, 3
flows_and_ci
        (estimate_transmission_flows_and_ci),
        17
p_hat (estimate_p_hat), 12
phat (estimate_p_hat), 12
pp (prep_p_hat), 22
prep_p_hat, 13, 22
prep_p_hat(), 13
prep_phat (prep_p_hat), 22
```